1)

a) What is each interval worth
c) What is the volume of the liquid in the on the container?

b) What is the

 capacity of one container? part-filled container?d) What is the total volume of liquid?
\qquad l and \qquad ml

2)

a) What is each interval worth on the container?
b) What is the capacity of one container?
c) What is the volume of the liquid in the part-filled container?
d) What is the total volume of liquid?
\qquad l and
\qquad
\qquad
\qquad
\qquad
3)
a) What is each interval worth on the container?
\qquad
c)

What is the volume of the liquid in the part-filled container?
b) What is the capacity of one container?
d) What is the total volume of liquid?

\qquad
\qquad l and \qquad ml

Eva and Joe have been using jugs of water to fill a bucket.

Joe says, "I used this many jugs."

1) Who put more water into the bucket? Explain your answer.
\qquad
\qquad
2) Joe says that the volume of liquid in this bucket is 8 litres 600 ml . Eva thinks it is less than that. Who is correct? Explain your answer.

3) Arif has been measuring the capacity of some containers but has lost the labels reminding himhow much water filled each container.
Fill in the missing information.

The volume of liquid
is \qquad -l
and \qquad ml

The volume of liquid
is \qquad -l
and \qquad ml .

The volume of liquid
is \qquad l
and \qquad ml .

The volume of liquid
is \qquad -l
and \qquad ml .

The volume of liquid
is \qquad l
and \qquad ml .
2) Use the clues to match the above capacities to the correct containers listed below.

bottle	$\ldots \mathrm{l}$ and ___ml	The glass has a capacity of less than $\frac{3}{4}$ of a litre.
bucket	_l and __ml	
4 cups	_l and __ml	One cup has the same capacity as one glass.
glass	$\ldots \mathrm{l}$ and __ml	The capacity of the pan is half the capacity of the bucket.
pan	$\ldots \mathrm{l}$ and __ml	

3) What clue could you give to describe the capacity of the bottle?
\qquad
\qquad
\qquad
